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Abstract —We consider the third-order intermodulation distortion (IMD)
of a system composed of a number of cascaded two-port networks. The
two-tone, third-order intercept point (IP) is highly dependent on the phase
angles of the IMD signals, which are usually unknown to the system
designer. Consequently, worst-case design strategies are normally used in
these situations.

In this paper, we develop general bound formulas for the intercept point
that include the effects of mismatches between component networks. We
also obtain expressions for the expected value and variance of the inter-
cept point of two cascaded two-port networks. A comparison of these
results with measurements indicates that worst-case design strategies are
overly conservative in many situations.

I. INTRODUCTION

HEN TWO SIGNALS at closely spaced frequen-

cies, f; and f,, are applied at the input of a
nonlinear device, the output contains intermodulation
products. Among these, the third-order product signals at
the frequencies 2f, — f, and 2f, — f,; are of concern be-
cause they are spaced close to the fundamental and cannot
be easily eliminated by filtering. A relative comparison of
the power levels of these third-order products to the funda-
mental power level is indicated by the two-tone, third-order
intercept point (IP), which is the hypothetical point where
the linear and third-order power responses intersect [1], [2].

When two-ports are connected in cascade, an accutate
determination of the IP of the overall system requires that
the phase angles of the intermodulation spurs be known.
As phase measurements of the intermodulation spurs are
difficult, an approximate expression for the IP given by
Wilson [3] is often used. This expression assumes the
worst-case situation, in which all the intermodulation spurs
add in phase. In addition, effects due to mismatches
between the two-ports are neglected.

In Section II of this paper, we develop exact expressions
for the intermodulation products generated by cascaded
two-ports and we obtain formulas for the maximum and
minimum bounds of system IP. System designers should
find these bound formulas useful in estimating the range
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of IP values that will be realized in practical design situa-
tions. We also analyze the IP of cascaded two-ports from a
statistical viewpoint in Section III. We obtain expressions
for the expected mean value and the variance of the IP for
two cascaded two-ports when the phases of the spur sig-
nals are assumed to be uniformly distributed. These results
are of interest to system designers, who are concerned with
producing large numbers of cascaded systems.

The bounds and statistics of the IP that are derived in
this paper are compared with experimental measurements
in Section IV. Our example shows that a high percentage
of measurements fall within the variance about the ex-
pected IP value. Consequently, expressions that provide a
worst-case estimate of the system IP may be too conserva-
tive for many production applications.

II. THEORY

The (ideal) fundamental and third-order responses for a
single two-port are shown in Fig. 1. Extrapolations from
the linear regions of these responses intersect at the inter-
cept point X. The output power level of X in dBm is
expressed as [3]

R
X=>+P, (dBm) (1)
where P, is the fundamental output power level (in dBm),
R is the relative suppression given by,

R=P,—D (dB) (2

and D is the output power (in dBm) of the spurious signal.
The power relationships (in mW) between the above quan-
tities are

(mW) (3)

x=r"?p,

where

r=p,/d (4)

and p, and d are expressed in mW.

Here, we obtain an expression for the intercept point x,
when a number of two-port networks are cascaded as
shown in Fig. 2. We assume that the source attached at
plane S and the load attached at plane T are matched (i.e,,
I, and T,, ., =0). The reflection coefficients I, T, - -
and T,, include reflections from all networks beyond their
reference planes. For example, I’y accounts for reflections
from networks 2 to n while I’y accounts for reflections
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Fig. 1. Fundamental and third-order response of a two-port device

showing intercept point.

from networks 1 and 2. We also define the following
notation:

Sy, = total forward transmission coefficient of compo-
nents i+1,i+2,---,n connected in cascade.
Evaluation of these coefficients should include
mismatches that occur between the various net-
works, i.e., S;, #I17_,S .y, unless I’ = 0.
complex power wave corresponding to the inter-
modulation (IM) product produced by the ith
network at a matched output.

The complex power waves by, b,, and b, are shown in
Fig. 2 along with b, which is the total third-order distor-
tion signal at the system output. Since the system input
and output are matched, S;, =1 and

STl ST2
by=b +b =+
TP -, ?1-T,IL
P b,. (5
+b————+ - +b,
11,1, "

We can express the IMD output signal power dy (in mW)
as

IbT|2 Zd gt+2 Z Z ld gz d gj
=1 1=2 =1
1>
-cos(¢,— ¢, +6,—6,) (6)
where
STz STt

g ell & = el (7)
\/'— 1- r21F21+1 1- r21112t+1
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Fig. 2. Cascade connection of n nonlinear two-ports.

and

b2 [, e (8)

We note that g, and , in (7) are expressible in terms of
the scattering parameters of the two-ports at the funda-
mental frequency because the spur frequency is spaced
close to the fundamental. These scattering parameters can
be individually measured with modern network analyzers
and the quantities g, and 6, can be calculated. The IMD
power levels d, given in (8) can also be measured but the
phases ¢;, which are very important in determining the
system output power of the IMD signal, are usually un-
known.

We obtain the relative suppression of the distortion
product at the system output r, by dividing d, by the
output power level of the fundamental signal p,. Without
loss in generality, we can equate the output power:

Po=Pi8i> i=1,2,"',n (9)
where p, is the power incident on a matched load at the
output of the ith network and g, accounts for all mis-

matches between the ith network and the system output.
Consequently, the relative suppression is

d , n d-g-d- 12
rT _T Z 8 +2 Z Z 4 gz J g_}
po 1=1p1 gl 1—21—1 pz'gz.pj'gj

i>j

-cos (¢, — ¢, +06,— Hj)

B 51(}2)“1-}_2 En:z z=:1 (",)Al/z(’})_l/z

-cos(¢,—,+6,—0) (10)

where r, is the relative suppression at the output of the ith
network. Multiplying both sides of (10) by p, 2 and using
(3) and (9), we get an expression for the intercept point for
the overall system:

~1/2

cos(,—9,+6,—06)
nggj

zn: n n

Xy = ——+2 ) Z

’ l=1x12g12 1=2 =1
1>

(11)

where x, is the intercept point of the ith component. The
above expression for the IP is exact and can be easily
included in computer-aided design (CAD) software. How-
ever, phase information about the spur signals is seldom
available so we must estimate x, by making assumptions
about ¢,.
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Maximum and Minimum Bounds on X,

The minimum value of x, occurs when the argument of
the cosine term in (11) is zero. In that case
: no1 )\
(£ ) (12
=1 %:i8;

If the networks are matched to each other, (12) agrees with

the result given in [3].
The maximum value of x; occurs when the argument of
the cosine term in (11) is # or some odd multiple thereof:

-1/2
1 non 1
22 2 Z Z . . (13)
18 i=2j=1 xlxjglgj

i>y

n

| L

1=1

This result represents the best possible situation where the
intercept point for a cascaded system reaches its highest
possible value. In general, however, the IP can fall any-
where between the bounds given by (12) and (13).

ITI. STATISTICAL ANALYSIS OF
THE INTERCEPT POINT

We have seen that the phase angle relationships between
the intermodulation spur signals and the scattering param-
eters determine the magnitude of the overall IP of a
cascaded system. Depending on the realization of these
phase angles, the IP of a cascaded system can range
between xP® and x**. In the past, a safe strategy has
been to assume the worst case value x™® when designing a
system. Although conservative, this approach guarantees
that the intermodulation products always fall below a
specified limit.

The above design approach may not be optimum when
designing systems for production, however. We may be
willing to produce a number of systems that fail the overall
IP design goal if 1) we can identify these faulty systems by
testing before shipment and 2) the production yield is
reasonably high. To adopt this alternative approach, we
consider the problem from a stochastic viewpoint. We
assume that the phase angle realizations of the spur signals
are random variables and we evaluate the expected value
E(x;) and the variance of the intercept point.

For the special case of two cascaded two-port networks,
n =2 and (11) simplifies to

A

= /B +cos(¢,— ¢, +6;)

(14)

where

A= X1X381

1/ x,
and B=-— +
2 \x8 X3

The minimum and maximum values of x, are 4/vB +1
and 4/vB —1, respectively. Assuming ¢, and ¢, as inde-
pendent random variables distributed uniformly between 0
and 27, the probability density function (pdf) f(y) of
the random variable y = cos(¢, — ¢, + 0,) is obtained [4]
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as

ly| <1. (16)

1
fY(y)=‘7rW’

The expected value of x; is therefore

. 4 1
E(xT)z'/—l\/B"‘y .‘77\/1—)’2 i
24 [ 2
_m/B+1K VB+1) (17)

where B>1 and K(-) is the complete elliptic integral of
the first kind. The mean square value of x, can also be
obtained as

)= 1
r —f~1(B+y) iyt
242 [ . B+1 1- B
= tan~ — —tan - ————|.
mVBZ—1 VBT -1 B> -1
(18)

When the number of nonlinear elements is greater than
two, determination of the expected value and variance of
xr becomes more involved. In those cases where three or
more subsystems contribute to the overall intercept point
value, a possible approach is to perform a Monte Carlo
simulation of the system.

In many cases, however, the generation of intermodula-
tion products can be attributed to one or two of the
cascaded two-ports, so the above analysis is a valid ap-
proximation. Hence, the above analysis will be valid if the
intermodulation distortion signals are primarily generated
by two of the cascaded networks.

IV. AN EXAMPLE AND CONCLUSIONS

Equation (11) allows us to compute the intercept point
of a system of cascaded two-port networks if we know the
scattering coefficients and the intercept point of each
network and the phases of each IMD spur. Since the spur
phases will usually be unknown, designers must be satis-
fied with knowing the bounds and the first-order statistics
of the intercept point. Although these calculations are
straightforward in principle, they are tedious and are best
done with a computer. In the following example, we use
scattering-parameter-based CAD software that was written
specifically for the purpose of analyzing general microwave
systems [5]. Called CAAMS (Computer-Aided Analysis of
Microwave Systems), this software package was developed
by the University of Massachusetts for Sanders Associates.

For illustration purposes, we consider the simple exam-
ple of the two cascaded Watkins-Johnson amplifiers shown
in Fig. 3. An attenuator was inserted between the ampli-
fiers to control the operating level of the second amplifier.
The small-signal scattering parameters of the component
networks were measured with a vector network analyzer in
the 400-1500 MHz frequency range, and catalog values of
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Fig. 4 Measured values of the intercept point for the example system
shown in Fig. 3. Also shown are the calculated bounds given by (12)
and (13) as well as the expected value and standard deviation of x, .

the intercept points provided by the manufacturer were
used in our analysrs of the intercept point for the overall
system

- Computed values of the minimum, maximum, expected
value, and standard deviation of the overall system inter-
cept point are shown in Fig. 4 as a function of frequency.
Measured values of the system intercept point are also
shown as data points. The system IP values were obtained
by measuring the system output power levels at the funda-
mental and the third-order IMD frequencies as a function
of the power levels of the input tones.

Frequency variations of the computed bounds, mean
value, and standard deviation of the IP are due primarily
to the passband and matching 'characteristivcs of the
amplifiers used in this example. Although most of the
measured intercept points fall within a standard deviation
of the mean value, we remind the reader that the measure-
ments can fall anywhere between the two limiting bounds.
We can expect that measurements of a large ensemble of
similar systems would average to the expected value shown,
but the IP values for a single system will range between
X/ and X

Our example system includes two amplifiers that con-
tribute IMD signals and a passive linear attenuator that
does not. Although passive linear networks have intercept
points that are infinite, they still influence the overall
system IP through their transmission and reflection prop-
erties. In fact, it is possible to tune IMD signal levels
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generated by a cascaded system with a linear network
element.

Our analysis of two-tone, third-order distortion shows
that CAD techniques can effectively estimate the effects of
IMD signals in cascaded two-ports. In addition to calculat-
ing the maximum and minimum bounds of the intercept
point, one can evaluate its expected value and variance.
The latter quantities are useful in getting a handle on the
performance statistics that a large number of cascaded
circuits will achieve in productron
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