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Abstract — We consider the third-order interrnodnlation distortion (IMD)

of a system composed of a number of cascaded two-port networks. The

two-tone, third-order intercept point (1P) is hlgfdy dependent on the phase

angles of the IMD signafs, which are nsnally nnknown to the system

designer.. Consequently, worst-case design strategies are normally nsed in

these situations.

In this paper, we develop generaf bound forundas for the intercept point

that include the effects of mismatches between component networks. We

afso obtain expressions for the expected value and variance of the inter-

cept point of two cascaded two-port networks. A comparison of these

resnlts with measurements indicates that worst-case design strategies are

overly conservative in many situations.

I. INTRODUCTION

w HEN TWO SIGNALS at closely spaced frequen-

cies, ~1 and f2, are applied at the input of a

nonlinear device, the output contains intermodulation

products. Among these, the third-order product signals at

the frequencies 2fl – f2 and 2f2– fl are of concern be-

cause they are spaced close to the fundamental and cannot

be easily eliminated by filtering. A relative comparison of

the power levels of these third-order products to the funda-

mental power level is indicated by the two-tone, third-order

intercept point (1P), which is the hypothetical point where

the linear and third-order power responses intersect [1], [2].

When two-ports are connected in cascade, an accurate

determination of the 1P of the overall system requires that

the phase angles of the intermodulation spurs be known.

As phase measurements of the intermodulation spurs are

difficult, an approximate expression for the 1P given by

Wilson [3] is often used. This expression assumes the

worst-case situation, in which all the intermodulation spurs

add in phase. In addition, effects due to mismatches

between the two-ports are neglected.

In Section II of this paper, we develop exact expressions

for the intermodulation products generated by cascaded

two-ports and we obtain formulas for the maximum and

minimum bounds of system 1P. System designers should

find these bound formulas useful in estimating the range
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of 1P values that will be realized in practical design situa-

tions. We also analyze the 1P of cascaded two-ports from a

statistical viewpoint in Section III. We obtain expressions

for the expected mean value and the variance of the 1P for

two cascaded two-ports when the phases of the spur sig-

nals are assumed to be uniformly distributed. These results

are of interest to system designers, who are concerned with

producing large numbers of cascaded systems.

The bounds and statistics of the 1P that are derived in

this paper are compared with experimental measurements

in Section IV. Our example shows that a high percentage

of measurements fall within the variance about the ex-

pected 1P value. Consequently, expressions that provide a

worst-case estimate of the system 1P may be too conserva-

tive for many production applications.

II. THEORr

The (ideal) fundamental and third-order responses for a

single two-port are shown in Fig. 1. Extrapolations from

the linear regions of these responses intersect at the inter-

cept point X. The output power level of X in clBm is

expressed as [3]

X=:+PO (,dBm) (1)

where POis the fundamental output power level (in dBm),

R is the relative suppression given by,

R= PO– D (dB) (2)

and D is the output power (in dBm) of the spurious signal.

The power relationships (in mW) between the above quan-

tities are

pO (mW)~ = # (3)

where

r = po/d (4)

and PO and d are expressed in mW.
Here, we obtain an expression for the intercept point XT

when a number of two-port networks are cascaded as

shown in Fig. 2. We assume that the source attached at

plane S and the load attached at plane T are matched (i.e.,

r. and rz~+l = O). The reflection coefficients rl, 1’2, 0 “ “

and r2 ~ include reflections from all networks beyond their

reference planes. For example, r~ accounts for reflections

from networks 2 to n while rd accounts for reflections
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and third-order response of a two-port device
showing intercept point.

and 2. We also define the following

ST, = total forward transmission coefficient of compo-

nents i+l, i+2, ”4”, n connected in cascade.

Evaluation of these coefficients should include

mismatches that occur between the various net-

works, i.e., ST, + ~~= ,S, + ~, unless I“ = O.

b, = complex power wave corresponding to the inter-

modulation (IM) product produced by the i th

network at a matched output.

The complex power waves bl, b2, and b. are shown in

Fig. 2 along with b =, which is the total third-order distor-

tion signal at the system output. Since the system input

and output are matched, ST. = 1 and

s s
bT=bl ‘1 +bz ‘2 +.. .

l–r2r3 1 – r4r5

s Tr
+ b,

1 – r2,r2r+1 +
. ..+bn. (5)

We can express the IMD output signal power d~ (in mW)

as

d==~b,lz= ~d,. gi+2 ~ ~ /-
,=1 ,= ’2,=1

l>,

.cos(r$, -c+J+oz-oJ ) (6)

where

&-e,@! A ‘T’ s Tt
~ J%,

I – r2,r21t1 = ~ – rz,rz,tl
(7)

Fig. 2. Cascade connection of n nonlinear two-ports

We note that g, and @i in (7) are expressible in terms of

the scattering parameters of the two-ports at the funda-

mental frequency because the spur frequency is spaced

close to the fundamental. These scattering parameters can

be individually measured with modern network analyzers

and the quantities g, and 19ican be. calculated. The IMD

power levels di given in (8) can also be measured but the

phases @i, which are very important in determining the

system output power of the IMD signal, are usually un-

known.

We obtain the relative suppression of the distortion

product at the system output r= by dividing dT by the

output power level of the fundamental signal PO. Without

loss in generality, we can equate the output power:

P.= Pigi> i=l,2,. ... n (9)

where p, is the power incident on a matched load at the

output of the i th network and g, accounts for all mis-

matches between the i th network and the system output.

Consequently, the relative suppression is

i>j

.Cos(+, –$+d, -ej

= i (rt)-1+2 ~ ~ (,t)-lqr,)-l/*
1=1 1=2]=1

l>J

.cos(r#), -r$J+tlz-q) (10)

where q is the relative suppression at the output of the i th

network. Multiplying both sides of (10) by pa– 2 and using

(3) and (9), we get an expression for the intercept point for

the overall system:

hi
1=2j=l

l>J I
– 1/2

cos(@z–@l, +6z-8J )

X,x, g,g,

(11)

where xl is the intercept point of the i th component. The

above expression for the 1P is exact and can be easily

included in computer-aided design (CAD) software. How-

ever, phase information about the spur signals is seldom

available so we must estimate XT by making assumptions

about r#si.
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Maximum and Minimum Bounds on XT as

The minimum value of XT occurs when the argument of

the cosine term in (11) is zero. In that case fY(Y) =
>’ “’<l”

(16)
nl–y

‘( )“1-1
X=mn= z— .

, =1 ‘~gi
(12)

If the networks are matched to each other, (12) agrees with

the result given in [3].

The maximum value of XT occurs when the argument of

the cosine term in (11) is T or some odd multiple thereof:

i )
– 1/2

X:a = ,:1 & –UL5 1 .(13)
J i=zj=l ‘ZxJg, gJ

i>]

This result represents the best possible situation where the

intercept point for a cascaded system reaches its highest

possible value. In general, however, the 1P can fall any-

where between the bounds given by (12) and (13).

III. STATISTICAL ANALYSIS OF

THE INTERCEPT POINT

We have seen that the phase angle relationships between

the intermodulation spur signals and the scattering param-

eters determine the magnitude of the overall 1P of a

cascaded system. Depending on the realization of these

phase angles, the 1P of a cascaded system can range

between x? and X?=. In the past, a safe strategy has

been to assume the worst case value x~ti when designing a

system. Although conservative, this approach guarantees

that the intermodulation products always fall below a

specified limit.

The above design approach may riot be optimum when

designing systems for production, however. We may be

willing to produce a number of systems that fail the overall

1P design goal if 1) we can identify these faulty systems by

testing before shipment and 2) the production yield is

reasonably high. To adopt this alternative approach, we

consider the problem from a stochastic viewpoint. We

assume that the phase angle realizations of the spur signals

are random variables and we evaluate the expected value

E(xT) and the variance of the intercept point.

For the special case of two cascaded two-port networks,

n = 2 and (11) simplifies to

where

Xlxzgl
A=—

2 and ‘=%%+%) ‘1’)

The minimum and maximum values of XT are A/d=
and A /4~, respectively. Assuming @l and +2 as inde-

pendent random variables distributed uniformly between O

and 27, the probability density function (pdf ) f ~(y) of

the random variable y = COS(OI – Oz + 01) is obtained [4]

The expected value of XT is therefore

r()‘*&i%Ti (17)

where B >1 and K(. ) is the complete elliptic integral of

the first kind. The mean square value of XT can also be

obtained as

2A2
.

[ 1+=7‘“-1&+tan-l& “
(18)

When the number of nonlinear elements is greater than

two, determination of the expected value and variance of

XT becomes more involved. In thclse cases where three or

more subsystems contribute to tht: overall intercept point

value, a possible approach is to perform a Monte Carlo

simulation of the system.

In many cases, however, the generation of intermodula-

tion products can be attributed to one or two of the

cascaded two-ports, so the above analysis is a valid ap-

proximation. Hence, the above analysis will be valid if the

intermodulation distortion signals are primarily generated

by two of the cascaded networks.

IV. AN EXAMPLE AND CONCLUSIONS

Equation (11) allows us to compute the intercept point

of a system of cascaded two-port networks if we know the

scattering coefficients and the intercept point of each

network and the phases of each IMD spur. Since the spur

phases will usually be unknown, designers must be satis-

fied with knowing the bounds and the first-order statistics

of the intercept point. Although these calculations are

straightforward in principle, they are tedious and are best

done with a computer. In the following example, we use

scattering-parameter-based CAD software that was written

specifically for the purpose of ana~yzing general microwave

systems [5]. Called CAAMS (Qomputer-~ided @alysis of

Microwave ~ystems), this software package was developed

by the University of Massachusetts for Sanders Associates.

For illustration purposes, we consider the simple examp-

le of the two cascaded Watkins-Johnson amplifiers shown

in Fig. 3. An attenuator was inse~ted between the ampli-

fiers to control the operating level of the second amplifier.

The small-signal scattering parameters of the component

networks were measured with a vector network analyzer in

the 400–1500 MHz frequency ranf~e, and catalog values of
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WJ-A43 WJ-A36 generated by a cascaded system with a linear network

~ “ement”

Our analysis of two-tone, third-order distortion shows

that CAD techniques can effectively estimate the effects of

IMD signals in cascaded two-ports. ln addition to calculat-

ing the maximum and minimum bounds of the intercept

Fig. 3. Block diagram of example cascaded system. point, one can evaluate its expected value and variance.

The latter quantities are useful in getting a handle on the

performance statistics that a large number of cascaded

I circuits will achieve in production.
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Fig. 4. Measured values of the interceDt ~oint for the exanmle svstem
~hown in Fig. 3. Also shown are” the &l~ulated bounds giv~n b; (12)

and (13) as well as the expected value and standard deviation of XT.

the intercept points provided by the manufacturer were

used in our analysis of the intercept point for the overall

system.

Computed values of the minimum, maximum, expected

value, and standard deviation of the overall system inter-

cept point are shown in ‘Fig. 4 as a function of frequency.

Measured values of the system intercept point are also

shown as data points. The system 1P values were obtained

by measuring the system output power levels at the funda-

mental and the third-order IMD frequencies as a function

of the power levels of the input tones.

Frequency variations of the computed bounds, mean

value, and standard deviation of the IF? are due primarily

to the passband and matching characteristics of the

amplifiers used in this example. Although m’ost of the

measured intercept points fall within a standard deviation

of the mean value, we remind the reader that the measure-

ments can fall anywhere between the two limiting bounds.

We can expect that measurements of a large ensemble of

similar systems would average to the expected value shown,

but the 1P values for a single system will range between

X~tiri and X~=.

Our example system includes two amplifiers that con-

tribute IMD signals and a passive linear attenuator that

does not. Although passive linear networks have intercept

points that are infinite, they still influence the overall

system 1P through their transmission and reflection prop-

erties. In fact, it is possible to tune IMD signal levels

[1]

[2]

[3]

[4]

[5]
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